This report covers the CES 2018. Focus of this report is on the automotive HMIs shown at the show. The information was collected by visiting the booths in the North Hall of the event location and booths in the other halls and location, that are automotive related. Besides analyzing the exhibits, discussions with booth personnel where held where possible und useful. This report reflects my personal and professional opinion on the technologies discussed. Please let me know your thoughts!
General Trends
The CES 2018 was located at Las Vegas, NV and opened the doors from January 8 to 12, 2018. It was, of course, the biggest ever. More than 4,000 exhibitors shared 26 million square feet exhibition space. 180,000 visitors, 58,000 from outside the USA, attended the show. This year’s show was the 50th. The massive attendance led to extended waiting times, the badge pickup was an exercise that took at least 30min. Restrooms, food stalls, and shuttle busses where occupied by long lines. The CES became too big to fail, but it also too big to be fun.
Automotive Trends
Until about 10 years ago the automotive part of the CES was out of the major focus. The North Hall, traditionally the location for automotive related booths, was occupied by aftermarket companies, selling massive amplifiers, speakers, and cables. Companies like Pioneer and Kenwood with a strong portfolio of aftermarket devices and OEM supply where present as well.
With the growing integration of electronics into vehicles and vehicles into networks, the character of the North Hall changed radically. Major OEMs like Mercedes, Hyundai, or Toyota and large suppliers like Continental, Delphi, or Denso displayed their technologies. In 2017 the suppliers had the most exciting and innovative booths, the OEMs kept a little lower profile. This year the major trends were:
Automotive HMI Trends
CASE: Connected, Autonomous, Shared, Electric
The CASE mantra as used by Mercedes, BMW calls it ACES, is supposed to reflect the major trends of the automotive industry. It stands for:
One or more aspects of the CASE mantra was reflected on every automotive booth. From sensor companies like Valens to service providers like Elektro Bit, suppliers like Denso to OEMs like Mercedes this mantra steers thinking and acting in the automotive industry.
Displays Everywhere
Almost every showcase, seat box, and prototype car at the show included a high number of displays. Trend is a large display extended over the entire dash board, often combined with additional displays in the center stack or head up displays. The big open question remains: how do we use all this HMI real estate we create in cars? Is this a way to create real value for users? Or are we just packing all the technology into vehicle because it is available? Future will tell us. And beyond HMI///// will be a part of the answer.
Illuminated Surfaces
Illuminated surfaces where shown in a few concepts. First of all, this is a decorative element, creating atmospheres and environments for drivers. Ambient light is a trend in automotive interiors, illuminated surfaces are the next step.
These technologies shall be used as HMI components as well. They can transfer subtle information, small changes, reaching unconscious parts of our cognition and decision making. An additional way of information transfer will be activated. Blind spot warnings will be a core use case, extending the visual range of the driver.
Windows as Screens
Using window areas as screen will allow new ways of communication between car, driver and environment. From advertisements, delivery services to emergency warning use cases are possible. In the interior the use of windows to allow augmented reality, meaning the overlay of the real world with additional information or entertainment scenarios in high levels of autonomous driving are definitely use cases.
Personal Highlights
As every year Rinspeed showed a highly innovative, exciting concept. This year the SNAP was presented. The vehicle has two separate parts. The so-called skateboard is the lower part of the car. It contains the electric drive train and the driving related electronics. This part of the vehicle is supposed to be shared. The skateboards will drive around in streets autonomously, charge themselves when needed, and may be called by a smart phone app or a PC software.
The so-called PODs are the upper parts of the vehicles. They are personally owned, meaning, I have my pod, it is equipped with my favorite entertainment electronics, communication channels, my preferred leather seats, my artificial intelligence robot and so on. An HMI on demand was integrated. The interaction between user and vehicle is adapted to various use cases.
After a skateboard arriving at my premises the Pod is connected to the skateboard. The two build a complete, autonomous vehicle, carrying me to my destination. Arriving there the Pod is disconnected and used by another user to move his or her Pod.
This concept combines personal ownership of the components that I see and touch in a vehicle, with shared drive trains. The skateboards contain the components that out date quickly. Since they are shared and drive almost constantly, their life time will be limited to a few years. The Pods will have a lifetime of 10 or years, so the personalized part of the vehicles remains in the users’ ownership for much longer.
As all the concepts of Rinspeed: highly innovative. Completely out of the box. Exciting.
MBUX by Mercedes
The MBUX by Mercedes was explicitly not shown as a show case or a future concept, but as the HMI solution for the upcoming A-Class vehicle. The trend towards large display was reflected as well as a multi modal interaction. The concept includes the cluster instrument and an infotainment display attached. The impression of one large display is created. The HMI concept is fully integrated. Display content can be adapted and moved on the HMI real estate. Content and design of the cluster can be adapted to different use cases. The graphic design uses one common design language. The user may select his or her preferred version from a number of different design schemes.
Interactions are possible using steering wheel devices, a touch pad mounted between the front seats and a touch screen for the infotainment area. The steering wheel devices contain a few hard keys and two small touch devices on either side of the steering wheel. Voice interaction should be possible as well, but was not show cased, probably due to the background noise in the exhibition hall.
The concept picks up existing HMI trends and puts them into an innovative product. The fact, that this will be on roads is exciting on side but frightening on the other. Mercedes will have done many user studies and analysis, but I personally doubt, that the complexity of the interface will be fully understood by all users. The questions where and how can I control what will be permanently open while driving. Probably driver will select one way of interaction, ignoring the others to feel comfortable with the functionality.
But: a big step forward, showing the chances of HMI technologies smartly integrated.
Brain to Car Interface by Nissan
Nissan showcased a brain to car interface. The idea of controlling a technology by using brain waves exists since a few years. Up to now only a few laboratory prototypes have been developed. Technological hurdles like the measurements and interpretation of data, where too big to turn this HMI technology into reality. Nissan claims to pass these hurdles. They showed a seat box with a helmet measuring brain waves. These are used to predict driver intentions and support decision making.
Due to technical problems of the seat box it was not possible to see a demonstration. If it shall work the way promised, it may be disruptive in the HMI development, not only in vehicles!
The Byton: is that the Way into Future?
The Byton show car was discussed heavily before the show and the booth was occupied almost anytime with a large crowd. At first and from the out side this car seems to be just one more mid-size SUV with an electric drive train. The design is average, nicely done but far from exciting, outstanding, or unusual.
The interior is dominated by a huge screen covering the entire dashboard. This reflects the trends of this show, was presented by Rinspeed already in 2017, but here it is moved one step closer to reality. In contrast to this the poorly mounted screens for the rear seat entertainment indicate the front row focus of the car. Byton made one more step towards the integration of the consumer world into the vehicle. A certain focus is on the health status of the driver, connectivity to the smart home, and communication with external instances.
Open questions remain on the use of the large display in the vehicle. Is that really the way into future? What will it be used for? Plus, that we have seen many companies like Faraday Future, Mindset or Coda Automotive, that announced innovative vehicles, but failed to deliver. Let’s keep an eye on this!
Outlook
The CES is the number one show on electronics, communication, consumer devices, no doubt. The automotive part grows in importance, future trends beyond horsepower and torque become visible here. The world will be connected in the future, and the car will play a core role in this network. You will see me there in 2019. And I until then will learn to life with long waiting lines everywhere!
About Peter Rössger and beyond HMI/////:
HMI Guru. HMI Expert. HMI Punk. Speaker. Author. Visionary. Innovator. Inspirator. Creator. Peter Rössger is founder of beyond HMI/////. We focus on creating knowledge on HMIs, usability and user experience for the automotive industry, the Industrial Internet, mobile machinery, and software applications. We perform studies on usability and user experience. We use our knowledge to develop HMI concepts for our customers.
Until early 2015 Peter was Business Development Director at TES Electronic Solutions GmbH. During his 12 years with Harman Automotive he created HMI concepts for automotive OEMs like Mercedes, Porsche, Toyota, Hyundai, PSA, Ferrari, and Harley Davidson. For Daimler he worked 4 years in driver-vehicle interaction. Peter holds a doctorial degree in Human Factors Engineering from the Technical University of Berlin. He published various papers on usability, user experience, cross cultural HMIs, and autonomous driving. He lives at Böblingen near Stuttgart, Berlin, and at Port d’Andratx, Mallorca.